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Introduction

Online aggregation of genetic sequencing data, and the publicly available data produced,
are invaluable tools in research and the clinic. These databases have numerous applications
including prioritizing causal variants and leveraging common controls. However, summarizing
individual-level genotype data can mask population structure, resulting in increased potential
for confounding and reduced power. This limits the utility of these databases, especially for
understudied and ancestrally diverse populations.

Summix is a method used to deconvolute ancestry and provide ancestry-adjusted allele fre-
quencies from summary genetic data. The method uses a reference panel of allele frequencies
specific to ancestral populations, and estimates ancestry within a target admixed (or homoge-
neous) population.

Methods

Simulations
Data is simulated using 5 continental reference ancestries from 1000 Genomes (AFR, EAS, EUR,
IAM, SAS) and 1 ”Unknown” ancestry. For each simulation replicate, the proportions of the
5 reference ancestries are random, while the proportion of the unknown ancestry is fixed, and
the allele frequency for the unknown ancestry is random. These simulated admixed ancestries
are created using the multinomial distribution with the homozygous/heterozygous genotype
frequencies as parameters.

Summix Least Square Error
The minimization model defined by Summix is convex, and therefor solves to an absolute min-
imum when solved by SQP. The value of the final minimized solution is proportional to the
amount of hidden ancestry present in the simulated admixed proportions which is not present
in the reference panel.

Fixation Index
The fixation index is a measure between 0 and 1 which shows genetic variability between pop-
ulations. With human populations, these values typically range from 0.01 (French-Spaniards)
to 0.46 (Mbuti-Papuans). The FST is also shown to be proportional to the amount of hidden
ancestry.
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Figure 1. The Least Squares Error and FST values for simulations where the African an-
cestry was ”unknown” and removed from the reference panel. There is a relationship between
the error and FST and the amount of AFR ancestry present in the admixed population. This
relationship is shown when the other 4 ancestries are ”hidden”.

Figure 2. The log transformed least squares error and the FST values for a simulated
population with a fixed unknown ancestry.

Weir and Cockerham’s FST

Cockerham defined FST as the ratio of variance between populations to the total variance
in the ancestral population, and Weir and Cockerham (WC) provide the following estimator:
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This estimator is shown to be dependent on the ratio of sample sizes between the two pop-
ulations, and therefor a different estimator (Hudson’s) is recommended.

Hudson’s FST

The estimator defined by Hudson et. all is:
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FST across multiple SNPs
Bhatia et al. recommend using the ratio of averages to estimate FST across multiple SNPs,

as opposed to the average of ratios.
Ratio of Averages:
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Using these FST estimators, there seems to be a relationship between the Least Square Er-
ror and FST which can be used to estimate the proportion of hidden ancestry present in the
admixed population.

Estimate Unknown AF
If we modify our original Summix minimization equation, we can include an ”unknown”

reference ancestry proportion and AF to be solved for:

f(π) =

AFOBS −
K∑
k=1

(πk ·AFref,k)− πU ·AFU

2

subject to the constraints that
∑
πk + πU = 1 and 0 ≤ {AFref,k, AFU} ≤ 1.

However, there are two limitations to note:

1. The optimal minimized solution (regardless of reference AFs) would be AFOBS = AFU

and πU = 1. This will always minimize to 0, and therefor some limits should be placed on πU .

2. If the AFs are allowed to vary by SNP, this could be computationally intensive. Currently
our SQP model only has 5 variables, the inclusion of piU would be a 6th variable, but every
SNP AF would be another variable. One possible solution would be to make the AFU a vector
across all SNPs, but that also would limit the utility of solving for the AFs.

GnomAD AFR Example - 2 Reference, 1 Unknown
If we model the gnomAD AFR ancestry with 2 reference ancestries (AFR and EUR) and 1

unknown ancestry, we can make substitutions regarding FST but the two variables of interest
πU and AFU cannot be solved for.

f(π) = (AFOBS − πAFR ·AFAFR − πEUR ·AFEUR − πU ·AFU )2

FOBS−AFR
ST =

(AFOBS −AFAFR)2 − AFOBS (1−AFOBS)

NOBS − 1
− AFAFR (1−AFAFR)

NAFR − 1
AFOBS (1−AFAFR) +AFAFR (1−AFOBS)

FOBS−EUR
ST =

(AFOBS −AFEUR)2 − AFOBS (1−AFOBS)

NOBS − 1
− AFEUR (1−AFEUR)

NEUR − 1
AFOBS (1−AFEUR) +AFEUR (1−AFOBS)

Expectation-Maximization Algorithm
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Binomial likelihood model for genotype as implemented in ADMIXTURE (originally from
STRUCTURE):
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where q is the ancestry proportion and f is the allele frequency. This gives the log likelihood

of:
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where gij is the observed number of alleles (0/1/2).

Modifying this, we can obtain the probability of having Allele 1 at SNP j, and the probability
of not having Allele 1:
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Therefor, the log likelihood for either having the allele or not can be written as:
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∑
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]
Where hij is whether the individual has the allele or not. This may or may not be appli-

cable to overall allele frequencies, as this specifically targets individual observations instead of
summary statistics.

We may be able to use the original Summix model as it is convex and can be solved for both
ancestry proportions and unknown allele frequencies, if the other is fixed.

Block Relaxation Algorithm

This is Sequential Quadratic Programming. The log likelihoods stated above as well as the
Summix model are both convex, and can solved with SQP.

By fixing the allele frequencies, we can solve for ancestry proportions. By fixing ancestry
proportions, we can solve for allele frequencies. This process may be iterated until convergence.
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Initialize the starting parameters with ancestry proportions of 1
n . In our Afr/Eur/Unknown

example each ancestry proportions would be 1
3 . In our 5 ancestry + unknown this would be 1

6 .

Initialize our starting unknown allele frequency. Either a uniform allele frequency across all
SNPs or a random poisson/exponential distribution (reference alleles mirror exponential distri-
bution).

Pick starting parameter to solve for. If solving for ancestry proportions, this can be done
using SQP. If solving for unknown allele frequency, this can be done using:

AFU =

AFOBS −
K∑
k=1

(πk ·AFref,k)

πu

EM for Binomial mixture
We can treat the allele frequencies (which are usually calculated as allele count over allele

number) as binomial mixture such that we have n alleles in a population of N = 2 ·AC people.
Therefor the probability of having n alleles in a two population example is:

P (n|N,Θ) = π1Binom (n|N, θ1) + π2Binom (n|N, θ2)

or more generally

P (n|N,Θ) =
K∑
k=1

πkBinom (n|N, θk)

where pik are the ancestry proportions, θk is the allele frequency of ancestral population,
and n/N are the respective allele count/number.

Therefor the log-likelihood for our parameters is :

L (Θ|X,Z) = lnP (X,Z|Θ)

Where Θ represents the set of πk, θk, X represents the set of allele numbers/counts, and Z
represents the set of SNPs from each respective ancestry. This model assumes that the SNPs
are independent (LD) and that a given SNP comes from a respective ancestry. So the Auxiliary
Function is:

Q(Θ,Θo) = E [lnL (Θ|X,Z) |X,Θo]

and our expectation is:

E [lnP (X,Z, |Θ) |X,Θo] =

K∑
zi=1

lnP (ni, zi|Θ) · P (zi|ni,Θo)

where

P (zi = k|ni,Θo) =
P (zi = k, ni|Θo)

P (|Θo)
=

πk,oBinom (ni|Ni, θk,o)∑K
l=1 πl,oBinom (ni|Ni, θl,o)

We can then use the following expressions to update π and θ until convergence.

πm =
1

S

S∑
i=1

P (zi = m|ni,Θo)
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θm,S =

∑S
i=1 ni · P (zi = m|ni,Θo)∑S
j=1Nj · P (zj = m|nj ,Θo)
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Application to Genetic Data

Previously, we had tried to use a binomial mixture which was modeled as a ”jar full of coins”
with unknown proportion of coins and probability of heads for different coins. This leads to the
following mixture model:

P (n|N,Θ) =
K∑
k=1

πkBinom (n|N, θk)

where the πk and θk are estimated through an EM algorithm. We tried fixing the θk (allele
frequencies) to try and solve for the πk (ancestry proportions) but it didn’t work. Instead, we
adopt the model:

P (n|N,Θ) = Binom

(
n

∣∣∣∣N, K∑
k=1

πkθk

)

`(Θ) = lnL(Θ|X) =

S∑
i=1

ln

[
Binom

(
n

∣∣∣∣N, K∑
k=1

πkθk

)]
where
S is the set of SNPs
K are ancestries
πk are ancestry proportions for k
ni is the Allele Count for that SNP
Ni is the Allele Number for that SNP
θk is the Allele Frequency for that SNP

This returns the correct proportions as mentioned above, across all snps or random samples
of snps. Written out for the gnomAD AFR example, this log-likelihood looks like:

` (Θ|Allele Count/Number, Set of Reference SNPS) = ln [Binom (Allele Count | Allele Number, πAFRAFAFR + πEURAFEUR)]

This gives us the following log-likelihood distribution, which has the shape we would expect
for a log-likelihood of a binomial:
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We can also compare this to the shape of our least-squares model, which is used in Summix
and also solves to the same proportions:
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Because our binomial mixture model has changed, I will need to re-evaluate whether the esti-
mators I had been using the EM algorithm will work to solve for the maximum. The above plots
were generated via grid-search with a precision of 0.001. In the meantime, the log-likelihood
is continuous and twice differentiable, and if multiplied by -1, it is convex, so we can use it in
SQP! The results from SQP using the log-likelihood as an objective function, and using the
Summix package are below (across all 580K SNPs):

Log-Likelihood:
AFR: 0.8277273, EUR: 0.1722727, iterations: 31

Summix:
AFR: 0.828281, EUR: 0.171719. iterations: 15

Also, from preliminary testing, it seems that Summix is faster than using the LL as an
objective function. More testing will need to be done, but I believe this is because in every
iteration of SQP it is much faster to do matrix manipulation as in Summix, then to compute
the binomial density across 580K snps as with LL. They are both still very fast, but I have
noticed that Summix is 2-3 times faster.

9


